Role of Machine Learning and Deep Learning in Securing 5G-Driven Industrial IoT Applications

  • by

Role of Machine Learning and Deep Learning in Securing 5G-Driven Industrial IoT Applications
editor_iot
26/09/2021 – 17:30

Parjanay Sharma, Siddhant Jain, Shashank Gupta and Vinay Chamola: Role of Machine Learning and Deep Learning in Securing 5G-Driven Industrial IoT Applications

Abstract—The Internet of Things (IoT) connects millions of computing devices and has set a stage for future technology where industrial use cases like smart cities and smart houses will operate with minimal human intervention. IoT’s cross- domain amalgamations with emergent technologies like 5G and blockchain affects human life. Hence, increase in reliance over IoT necessitates focus on its privacy and security concerns. Implementing security through encryption, authentication, access control and communication security is the need of the hour. These needs can be best catered with the use of machine learning (ML) and deep learning (DL) that can help in realizing secure intelligent systems. In this work, the authors present a comprehensive review for securing Industrial-IoT (I-IoT) devices to contribute to the development of security methods for I- IoT deployed over 5G and blockchain. The survey provides a general analysis of the state-of-the-art security implementation and further assesses the product life cycle of IoT devices. The authors present numerous virtues as well as faults in the machine learning and deep learning algorithms deployed over the fog architecture in context with the security solutions. The potential security algorithms can help overcome many challenges in the IoT security and pave way for implementation with emerging technologies like 5G, blockchain, edge computing, fog computing and their use cases for creating smart environments. 

Index Terms—Industrial Internet of Things, Security, Machine Learning, Deep Learning, Artificial Intelligence, Block chain, Smart City 
 

Leave a Reply

Your email address will not be published. Required fields are marked *